CASE STUDY THREE

FDM/FOQA

PROBLEM

GO-AROUND PROCEDURE

FDS began working with a customer who had been using the Flight Safety Foundation’s Approach and Landing Accident Reduction (ALAR) Toolkit to train their crews in the importance of the stabilised approach.

This document stresses the importance of initiating a go-around if an approach does not meet the airline’s Standard Operating Procedures (SOPs) for stability.

This was working well until on one occasion a crew had initiated a go-around, the subsequent climb-out resulted in an ‘Enhanced Ground Proximity Warning System (EGPWS) Pull-Up Warning’.

INVESTIGATION

This approach failed to meet the airline’s SOP stability conditions so the crew had made the right decision to initiate the go-around. This should have led to a safe climb out without subsequent warnings.

The investigation focused on the operation of the aircraft following the decision to abort the landing.

FDS identified that whilst full power had been applied on both engines, the aircraft had not climbed as it should have. They reported that the flap had been retracted in accordance with the procedure but the speedbrakes were still deployed. As a result the aircraft had only climbed slowly and rising terrain led to the ‘Pull-Up Warning’. The crew realised their mistake and stowed the speedbrakes rather than pulling back on the control column.

To find out how you can improve flight safety in your operation visit www.flightdataservices.com
SOLUTION

With this information the airline FSO discussed the circumstances of the go-around with the crew concerned. He found they had followed the procedure correctly, but there was no reference to the speedbrakes on the go-around procedure.

FDS analysed the data and supplied their findings to the FSO who was then able to complete his interview with the crews and send an email to all pilots in the company, reminding them of the importance of retracting the speedbrakes and explaining that this was not in the current procedure.

Urgent action was also put into place to correct this omission.

FDS discovered that the crew in this case simply followed the procedure but overlooked the deployed speedbrakes. Fortunately the EGPWS alerted them to the error enabling them to avoid an accident.

CONCLUSION

An algorithm to detect this potentially dangerous situation is not called for in Civil Aviation Authority document CAP739 or in the Joint Aviation Authority’s advisory material.

However, since providing this additional algorithm to its customers, FDS have identified numerous cases where aircraft have been flown using climb power but with the speedbrakes still deployed.

As a result, all of these cases have been brought to the attention of the airline Flight Safety departments. This is an example how flight data monitoring needs to constantly evolve to reflect the ever changing hazards of airline operation. Safety is fundamental to how FDS operate.

The FDS investigation of this event identified a missing check for stowing speedbrakes after initiating a go-around. This has subsequently led to correction of the procedure and development of a new Flight Data Monitoring event; one that has identified that failure to stow the speedbrakes has been occurring more often than anticipated.